RocketMq 的介绍说明和集群搭建



RocketMQ是阿里巴巴开源的一个消息中间件,在阿里内部历经了双十一等很多高并发场景的考验,能够处理亿万级别的消息。2016年开源后捐赠给Apache,现在是Apache的一个顶级项目。目前RocketMQ在阿里云上有一个购买即可用的商业版本,商业版本集成了阿里内部一些更深层次的功能及运维定制。我们这里学习的是Apache的开源版本。开源版本相对于阿里云上的商业版本,功能上略有缺失,但是大体上功能是一样的。

RocketMq 集群架构说明


rocketmq_architecture_1165052829940244.png

RocketMQ架构上主要分为四部分,如上图所示:

  • Producer:消息发布的角色,支持分布式集群方式部署。Producer通过MQ的负载均衡模块选择相应的Broker集群队列进行消息投递,投递的过程支持快速失败并且低延迟。负责生产消息

    生产者还可以是生产者组,拥有多个生产者,用于事务消息的定期回查

  • Consumer:消息消费的角色,支持分布式集群方式部署。支持以push推,pull拉两种模式对消息进行消费。同时也支持集群方式和广播方式的消费,它提供实时消息订阅机制,可以满足大多数用户的需求。 负责消费消息

  • NameServerNameServer是一个非常简单的Topic路由注册中心,其角色类似Dubbo中的zookeeper,支持Broker的动态注册与发现。主要包括两个功能:

    • Broker管理NameServer接受Broker集群的注册信息并且保存下来作为路由信息的基本数据。然后提供心跳检测机制,检查Broker是否还存活;
    • 路由信息管理,每个NameServer将保存关于Broker集群的整个路由信息和用于客户端查询的队列信息。然后ProducerConumser通过NameServer就可以知道整个Broker集群的路由信息,从而进行消息的投递和消费。NameServer通常也是集群的方式部署,各实例间相互不进行信息通讯。Broker是向每一台NameServer注册自己的路由信息,所以每一个NameServer实例上面都保存一份完整的路由信息。当某个NameServer因某种原因下线了,Broker仍然可以向其它NameServer同步其路由信息,ProducerConsumer仍然可以动态感知Broker的路由的信息。
  • BrokerServerBroker主要负责消息的存储、投递和查询以及服务高可用保证,为了实现这些功能,Broker包含了以下几个重要子模块。

rocketmq_architecture_2.png

  1. Remoting Module:整个Broker的实体,负责处理来自Client端的请求。
  2. Client Manager:负责管理客户端(Producer/Consumer)和维护ConsumerTopic订阅信息。
  3. Store Service:提供方便简单的API接口处理消息存储到物理硬盘和查询功能。
  4. HA Service:高可用服务,提供Master BrokerSlave Broker之间的数据同步功能。
  5. Index Service:根据特定的Message key对投递到Broker的消息进行索引服务,以提供消息的快速查询。

主题Topic

​ 表示一类消息的集合,是一个逻辑概念,每个主题包含若干条消息,每条消息只能属于一个主题,是RocketMQ进行消息订阅的基本单位。同一个Topic下的数据,会分片保存到不同的Broker上,而每一个分片单位,就叫做MessageQueueMessageQueue是生产者发送消息与消费者消费消息的最小单位。

RocketMQ 网络部署特点

rocketmq_architecture_3.png

  • NameServer是一个几乎无状态节点,可集群部署,节点之间无任何信息同步。
  • Broker部署相对复杂,Broker分为MasterSlave,一个Master可以对应多个Slave,但是一个Slave只能对应一个MasterMasterSlave 的对应关系通过指定相同的BrokerName,不同的BrokerId 来定义,BrokerId为0表示Master,非0表示SlaveMaster也可以部署多个。每个BrokerNameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。 注意:当前RocketMQ版本在部署架构上支持一Master多Slave,但只有BrokerId=1的从服务器才会参与消息的读负载。
  • ProducerNameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer获取Topic路由信息,并向提供Topic 服务的Master建立长连接,且定时向Master发送心跳。Producer完全无状态,可集群部署。
  • ConsumerNameServer集群中的其中一个节点(随机选择)建立长连接,定期从NameServer获取Topic路由信息,并向提供Topic服务的MasterSlave建立长连接,且定时向MasterSlave发送心跳。Consumer既可以从Master订阅消息,也可以从Slave订阅消息,消费者在向Master拉取消息时,Master服务器会根据拉取偏移量与最大偏移量的距离(判断是否读老消息,产生读I/O),以及从服务器是否可读等因素建议下一次是从Master还是Slave拉取。

结合部署架构图,描述集群工作流程

  1. 启动NameServerNameServer起来后监听端口,等待BrokerProducerConsumer连上来,相当于一个路由控制中心
  2. Broker启动,跟所有的NameServer保持长连接,定时发送心跳包。心跳包中包含当前Broker信息(IP+端口等)以及存储所有Topic信息。注册成功后,NameServer集群中就有TopicBroker的映射关系。
  3. 收发消息前,先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,也可以在发送消息时自动创建Topic
  4. Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取当前发送的Topic存在哪些Broker上,轮询从队列列表中选择一个队列,然后与队列所在的Broker建立长连接从而向Broker发消息。
  5. ConsumerProducer类似,跟其中一台NameServer建立长连接,获取当前订阅Topic存在哪些Broker上,然后直接跟Broker建立连接通道,开始消费消息。

RocketMq Quick Start

具体可以看官方文档指引

搭建RcoketMq集群

1.环境和机器

IP broker节点部署
192.168.230.133 4C8G
192.168.230.134 4C8G broker-a, broker-b-s
192.168.230.135 4C8G broker-b,broker-a-s

134的broker-a 和135的broker-a-s 为一组主从,135的broker-b 和134的broker-b-s为一组主从。

2.前期准备

免密登录

ssh-copy-id

关闭防火墙

systemctl stop firewalld.service
firewall-cmd --state

安装java和mvn

由于rocketmq本身就是java来实现的,maven 是用于可视化界面

3.安装和配置RocketMQ集群

​ 安装见3️⃣RocketMq Quick Start

环境变量

#setting java jdk
export JAVA_HOME=/work/java/jdk1.8.0_171
export ROCKETMQ_HOME=/work/rocketmq/rocketmq-4.9.3
PATH=$ROCKETMQ_HOME/bin:$JAVA_HOME/bin:$PATH:$HOME/.local/bin:$HOME/bin:$MAVEN_HOME/bin
export PATH

我们为了便于观察,这次搭建一个2主2从异步刷盘的集群,所以我们会使用conf/2m-2s-async下的配置文件,实际项目中,为了达到高可用,一般会使用dleger。所以修改的配置文件是进入rocketmqconfig目录下修改2m-2s-async的配置文件。--只需要配置broker.conf

在rocketmq的config目录下可以看到rocketmq建议的各种配置方式:

  • 2m-2s-async: 2主2从异步刷盘(吞吐量较大,但是消息可能丢失),
  • 2m-2s-sync:2主2从同步刷盘(吞吐量会下降,但是消息更安全),
  • 2m-noslave:2主无从(单点故障),然后还可以直接配置broker.conf,进行单点环境配置。
  • dleger就是用来实现主从切换的。集群中的节点会基于Raft协议随机选举出一个leader,其他的就都是follower。通常正式环境都会采用这种方式来搭建集群。

配置第一组broker-a

192.168.230.134上先配置borker-amaster节点。先配置2m-2s-async/broker-a.properties

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=10911
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/work/rocketmq/store
#commitLog 存储路径
storePathCommitLog=/work/rocketmq/store/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/work/rocketmq/store/consumequeue
#消息索引存储路径
storePathIndex=/work/rocketmq/store/index
#checkpoint 文件存储路径
storeCheckpoint=/work/rocketmq/store/checkpoint
#abort 文件存储路径
abortFile=/work/rocketmq/store/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=ASYNC_MASTER
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128

该节点对应的从节点在192.168.230.135上。修改2m-2s-async/broker-a-s.properties 只需要修改brokerIdbrokerRole

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=11011
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/work/rocketmq/storeSlave
#commitLog 存储路径
storePathCommitLog=/work/rocketmq/storeSlave/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/work/rocketmq/storeSlave/consumequeue
#消息索引存储路径
storePathIndex=/work/rocketmq/storeSlave/index
#checkpoint 文件存储路径
storeCheckpoint=/work/rocketmq/storeSlave/checkpoint
#abort 文件存储路径
abortFile=/work/rocketmq/storeSlave/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=SLAVE
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128

配置第二组broker-b

这一组broker的主节点在192.168.230.135上,所以需要配置192.168.230.135上的config/2m-2s-async/broker-b.properties

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=10911
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/work/rocketmq/store
#commitLog 存储路径
storePathCommitLog=/work/rocketmq/store/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/work/rocketmq/store/consumequeue
#消息索引存储路径
storePathIndex=/work/rocketmq/store/index
#checkpoint 文件存储路径
storeCheckpoint=/work/rocketmq/store/checkpoint
#abort 文件存储路径
abortFile=/work/rocketmq/store/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=ASYNC_MASTER
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128

然后它对应的slave在192.168.230.134上,修改192.168.230.134上的 conf/2m-2s-async/broker-b-s.properties

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876
#在发送消息时,自动创建服务器不存在的topic,默认创建的队列数
defaultTopicQueueNums=4
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
#是否允许 Broker 自动创建订阅组,建议线下开启,线上关闭
autoCreateSubscriptionGroup=true
#Broker 对外服务的监听端口
listenPort=11011
#删除文件时间点,默认凌晨 4点
deleteWhen=04
#文件保留时间,默认 48 小时
fileReservedTime=120
#commitLog每个文件的大小默认1G
mapedFileSizeCommitLog=1073741824
#ConsumeQueue每个文件默认存30W条,根据业务情况调整
mapedFileSizeConsumeQueue=300000
#destroyMapedFileIntervalForcibly=120000
#redeleteHangedFileInterval=120000
#检测物理文件磁盘空间
diskMaxUsedSpaceRatio=88
#存储路径
storePathRootDir=/work/rocketmq/storeSlave
#commitLog 存储路径
storePathCommitLog=/work/rocketmq/storeSlave/commitlog
#消费队列存储路径存储路径
storePathConsumeQueue=/work/rocketmq/storeSlave/consumequeue
#消息索引存储路径
storePathIndex=/work/rocketmq/storeSlave/index
#checkpoint 文件存储路径
storeCheckpoint=/work/rocketmq/storeSlave/checkpoint
#abort 文件存储路径
abortFile=/work/rocketmq/storeSlave/abort
#限制的消息大小
maxMessageSize=65536
#flushCommitLogLeastPages=4
#flushConsumeQueueLeastPages=2
#flushCommitLogThoroughInterval=10000
#flushConsumeQueueThoroughInterval=60000
#Broker 的角色
#- ASYNC_MASTER 异步复制Master
#- SYNC_MASTER 同步双写Master
#- SLAVE
brokerRole=SLAVE
#刷盘方式
#- ASYNC_FLUSH 异步刷盘
#- SYNC_FLUSH 同步刷盘
flushDiskType=ASYNC_FLUSH
#checkTransactionMessageEnable=false
#发消息线程池数量
#sendMessageThreadPoolNums=128
#拉消息线程池数量
#pullMessageThreadPoolNums=128

需要注意的配置项:

  • 同一机器上两个实例的store目录不能相同,否则会报错 Lock failed,MQ already started
  • 同一机器上两个实例的listenPort也不能相同。否则会报端口占用的错
  • nameserver不需要进行配置,直接启动就行。这也看出nameserver是无状态的。

配置参数说明-broker相关配置信息

参数名 默认值 说明
listenPort 10911 接受客户端连接的监听端口
namesrvAddr null nameServer 地址
brokerIP1 网卡的 InetAddress 当前 broker 监听的 IP
brokerIP2 跟 brokerIP1 一样 存在主从 broker 时,如果在 broker 主节点上配置了 brokerIP2 属性,broker 从节点会连接主节点配置的 brokerIP2 进行同步
brokerName null broker 的名称
brokerClusterName DefaultCluster 本 broker 所属的 Cluser 名称
brokerId 0 broker id, 0 表示 master, 其他的正整数表示 slave
storePathCommitLog $HOME/store/commitlog/ 存储 commit log 的路径
storePathConsumerQueue $HOME/store/consumequeue/ 存储 consume queue 的路径
mappedFileSizeCommitLog 1024 * 1024 * 1024(1G) commit log 的映射文件大小
deleteWhen 04 在每天的什么时间删除已经超过文件保留时间的 commit log
fileReservedTime 72 以小时计算的文件保留时间
brokerRole ASYNC_MASTER SYNC_MASTER/ASYNC_MASTER/SLAVE
flushDiskType ASYNC_FLUSH SYNC_FLUSH/ASYNC_FLUSH SYNC_FLUSH 模式下的 broker 保证在收到确认生产者之前将消息刷盘。ASYNC_FLUSH 模式下的 broker 则利用刷盘一组消息的模式,可以取得更好的性能。

配置参数说明-客户端相关配置信息

参数名 默认值 说明
namesrvAddr Name Server地址列表,多个NameServer地址用分号隔开
clientIP 本机IP 客户端本机IP地址,某些机器会发生无法识别客户端IP地址情况,需要应用在代码中强制指定
instanceName DEFAULT 客户端实例名称,客户端创建的多个Producer、Consumer实际是共用一个内部实例(这个实例包含网络连接、线程资源等)
clientCallbackExecutorThreads 4 通信层异步回调线程数
pollNameServerInteval 30000 轮询Name Server间隔时间,单位毫秒
heartbeatBrokerInterval 30000 向Broker发送心跳间隔时间,单位毫秒
persistConsumerOffsetInterval 5000 持久化Consumer消费进度间隔时间,单位毫秒

配置参数说明-生产者相关配置信息

参数名 默认值 说明
producerGroup DEFAULT_PRODUCER Producer组名,多个Producer如果属于一个应用,发送同样的消息,则应该将它们归为同一组
createTopicKey TBW102 在发送消息时,自动创建服务器不存在的topic,需要指定Key,该Key可用于配置发送消息所在topic的默认路由。
defaultTopicQueueNums 4 在发送消息,自动创建服务器不存在的topic时,默认创建的队 列数
sendMsgTimeout 10000 发送消息超时时间,单位毫秒
compressMsgBodyOverHowmuch 4096 消息Body超过多大开始压缩(Consumer收到消息会自动解压缩),单位字节
retryAnotherBrokerWhenNotStoreOK FALSE 如果发送消息返回sendResult,但是sendStatus!=SEND_OK,是否重试发送
retryTimesWhenSendFailed 2 如果消息发送失败,最大重试次数,该参数只对同步发送模式 起作用
maxMessageSize 4MB 客户端限制的消息大小,超过报错,同时服务端也会限制,所 以需要跟服务端配合使用。
transactionCheckListener 事务消息回查监听器,如果发送事务消息,必须设置
checkThreadPoolMinSize 1 Broker回查Producer事务状态时,线程池最小线程数
checkThreadPoolMaxSize 1 Broker回查Producer事务状态时,线程池最大线程数
checkRequestHoldMax 2000 Broker回查Producer事务状态时,Producer本地缓冲请求队 列大小
RPCHook null 该参数是在Producer创建时传入的,包含消息发送前的预处理和消息响应后的处理两个接口,用户可以在第一个接口中做一 些安全控制或者其他操作。

配置参数说明-PushCousumer相关配置信息

参数名 默认值 说明
consumerGroup DEFAULT_CONSUMER Consumer组名,多个Consumer如果属于一个应用,订阅同样的消息,且消 费逻辑一致,则应该将它们归为同一组
messageModel CLUSTERING 消费模型支持集群消费和广播消费两种
consumeFromWhere CONSUME_FROM_LAST_OFFSET Consumer启动后,默认从上次消费的位置开始消费,这包含两种情况:一种是上次消费的位置未过期,则消费从上次中止的位置进行;一种是上次消 费位置已经过期,则从当前队列第一条消息开始消费
consumeTimestamp 半个小时前 只有当consumeFromWhere值为CONSUME_FROM_TIMESTAMP时才起作 用。
allocateMessageQueueStrategy AllocateMessageQueueAveragely Rebalance算法实现策略
subscription 订阅关系
messageListener 消息监听器
offsetStore 消费进度存储
consumeThreadMin 10 消费线程池最小线程数
consumeThreadMax 20 消费线程池最大线程数
consumeConcurrentlyMaxSpan 2000 单队列并行消费允许的最大跨度
pullThresholdForQueue 1000 拉消息本地队列缓存消息最大数
pullInterval 0 拉消息间隔,由于是长轮询,所以为0,但是如果应用为了流控,也可以设置 大于0的值,单位毫秒
consumeMessageBatchMaxSize 1 批量消费,一次消费多少条消息
pullBatchSize 32 批量拉消息,一次最多拉多少条

配置参数说明-PullCousumer相关配置信息

参数名 默认值 说明
consumerGroup DEFAULT_CONSUMER Consumer组名,多个Consumer如果属 于一个应用,订阅同样的消息,且消费逻辑一致,则应该将它们归为同一组
brokerSuspendMaxTimeMillis 20000 长轮询,Consumer拉消息请求在Broker 挂起最长时间,单位毫秒
consumerTimeoutMillisWhenSuspend 30000 长轮询,Consumer拉消息请求在Broker 挂起超过指定时间,客户端认为超时,单位毫秒
consumerPullTimeoutMillis 10000 非长轮询,拉消息超时时间,单位毫秒
messageModel BROADCASTING 消息支持两种模式:集群消费和广播消费
messageQueueListener 监听队列变化
offsetStore 消费进度存储
registerTopics 注册的topic集合
allocateMessageQueueStrategy AllocateMessageQueueAveragely Rebalance算法实现策略

配置参数说明-Message数据结构

字段名 默认值 说明
Topic null 必填,消息所属topic的名称
Body null 必填,消息体
Tags null 选填,消息标签,方便服务器过滤使用。目前只支持每个消息设置一个tag
Keys null 选填,代表这条消息的业务关键词,服务器会根据keys创建哈希 索引,设置后,可以在Console系统根据Topic、Keys来查询消 息,由于是哈希索引,请尽可能保证key唯一,例如订单号,商品 Id等。
Flag 0 选填,完全由应用来设置,RocketMQ不做干预
DelayTimeLevel 0 选填,消息延时级别,0表示不延时,大于0会延时特定的时间才会被消费
WaitStoreMsgOK TRUE 选填,表示消息是否在服务器落盘后才返回应答。

4.启动RocketMQ集群

启动就比较简单了,直接调用bin目录下的脚本就行。只是启动之前要注意看下他们的JVM内存配置,默认的配置都比较高。默认是server:4G broker:8G,如果需要调整可以通过bin/runserver.sh文件,调整里面的jvm内存配置。

JAVA_OPT="${JAVA_OPT} -server -Xms512m -Xmx512m -Xmn256m -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m"

也可以通过bin/runbroker.sh文件,调整broker里面的jvm内存配置

JAVA_OPT="${JAVA_OPT} -server -Xms512m -Xmx512m"

直接在三个节点上启动nameServer

nohup bin/mqnamesrv &

启动完成后,在nohup.out里看到这一条关键日志就是启动成功了。

Java HotSpot(TM) 64-Bit Server VM warning: Using the DefNew young collector with the CMS collector is deprecated and will likely be removed in a future release
Java HotSpot(TM) 64-Bit Server VM warning: UseCMSCompactAtFullCollection is deprecated and will likely be removed in a future release.
The Name Server boot success. serializeType=JSON

这里也看到,RocketMQ在runserver.sh中是使用的CMS垃圾回收期,而在runbroker.sh中使用的是G1垃圾回收期。

启动broker是使用的mqbroker指令,只是注意启动broker时需要通过-c 指定对应的配置文件。

134上启动broker-a的master节点和broker-b的slave节点

nohup ./mqbroker -c ../conf/2m-2s-async/broker-a.properties &
nohup ./mqbroker -c ../conf/2m-2s-async/broker-b-s.properties &

135上启动broker-b的master节点和broker-a的slave节点

nohup ./mqbroker -c ../conf/2m-2s-async/broker-b.properties &
nohup ./mqbroker -c ../conf/2m-2s-async/broker-a-s.properties &

启动slave时,如果遇到报错 Lock failed,MQ already started ,那是有可能是因为有多个实例共用了同一个storePath造成的,这时就需要调整store的路径。

通过对应的nuhut.out日志可以看到

The broker[broker-b, 192.168.230.135:10911] boot success. serializeType=JSON and name server is 192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876
The broker[broker-a, 192.168.230.135:11011] boot success. serializeType=JSON and name server is 192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876

5.启动状态检查

使用jps指令,能看到一个NameSrvStartup进程和两个BrokerStartup进程。

# jps
18896 BrokerStartup
18631 NamesrvStartup
19017 BrokerStartup
71230 Jps

nohup.out中也有启动成功的日志。对应的日志文件:

# 查看nameServer日志
tail -500f ~/logs/rocketmqlogs/namesrv.log
# 查看broker日志
tail -500f ~/logs/rocketmqlogs/broker.log

测试mqadmin管理工具

RocketMQ的源代码中并没有为我们提供类似于Nacos或者RabbitMQ那样的控制台,只提供了一个mqadmin指令来管理RocketMQ,命令在bin目录下。使用方式是 ./mqadmin {command} {args}

1.Topic相关

名称 含义 命令选项 说明
updateTopic 创建更新Topic配置 -b Broker 地址,表示 topic 所在 Broker,只支持单台Broker,地址为ip:port
-c cluster 名称,表示 topic 所在集群(集群可通过 clusterList 查询)
-h- 打印帮助
-n NameServer服务地址,格式 ip:port
-p 指定新topic的读写权限( W=2|R=4|WR=6 )
-r 可读队列数(默认为 8)
-w 可写队列数(默认为 8)
-t topic 名称(名称只能使用字符 ^[a-zA-Z0-9_-]+$ )
deleteTopic 删除Topic -c cluster 名称,表示删除某集群下的某个 topic (集群 可通过 clusterList 查询)
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic 名称(名称只能使用字符 ^[a-zA-Z0-9_-]+$ )
topicList 查看 Topic 列表信息 -h 打印帮助
-c 不配置-c只返回topic列表,增加-c返回clusterName, topic, consumerGroup信息,即topic的所属集群和订阅关系,没有参数
-n NameServer 服务地址,格式 ip:port
topicRoute 查看 Topic 路由信息 -t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
topicStatus 查看 Topic 消息队列offset -t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
topicClusterList 查看 Topic 所在集群列表 -t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
updateTopicPerm 更新 Topic 读写权限 -t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
-b Broker 地址,表示 topic 所在 Broker,只支持单台Broker,地址为ip:port
-p 指定新 topic 的读写权限( W=2|R=4|WR=6 )
-c cluster 名称,表示 topic 所在集群(集群可通过 clusterList 查询),-b优先,如果没有-b,则对集群中所有Broker执行命令
updateOrderConf 从NameServer上创建、删除、获取特定命名空间的kv配置,目前还未启用 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic,键
-v orderConf,值
-m method,可选get、put、delete
allocateMQ 以平均负载算法计算消费者列表负载消息队列的负载结果 -t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
-i ipList,用逗号分隔,计算这些ip去负载Topic的消息队列
statsAll 打印Topic订阅关系、TPS、积累量、24h读写总量等信息 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-a 是否只打印活跃topic
-t 指定topic

2.集群相关

名称 含义 命令选项 说明
clusterList 查看集群信息,集群、BrokerName、BrokerId、TPS等信息 -m 打印更多信息 (增加打印出如下信息 #InTotalYest, #OutTotalYest, #InTotalToday ,#OutTotalToday)
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
-i 打印间隔,单位秒
clusterRT 发送消息检测集群各Broker RT。消息发往${BrokerName} Topic。 -a amount,每次探测的总数,RT = 总时间 / amount
-s 消息大小,单位B
-c 探测哪个集群
-p 是否打印格式化日志,以|分割,默认不打印
-h 打印帮助
-m 所属机房,打印使用
-i 发送间隔,单位秒
-n NameServer 服务地址,格式 ip:port

3.Broker相关

名称 含义 命令选项 说明
updateBrokerConfig 更新 Broker 配置文件,会修改Broker.conf -b Broker 地址,格式为ip:port
-c cluster 名称
-k key 值
-v value 值
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
brokerStatus 查看 Broker 统计信息、运行状态(你想要的信息几乎都在里面) -b Broker 地址,地址为ip:port
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
brokerConsumeStats Broker中各个消费者的消费情况,按Message Queue维度返回Consume Offset,Broker Offset,Diff,TImestamp等信息 -b Broker 地址,地址为ip:port
-t 请求超时时间
-l diff阈值,超过阈值才打印
-o 是否为顺序topic,一般为false
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
getBrokerConfig 获取Broker配置 -b Broker 地址,地址为ip:port
-n NameServer 服务地址,格式 ip:port
wipeWritePerm 从NameServer上清除 Broker写权限 -b Broker 地址,地址为ip:port
-n NameServer 服务地址,格式 ip:port
-h 打印帮助
cleanExpiredCQ 清理Broker上过期的Consume Queue,如果手动减少对列数可能产生过期队列 -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-b Broker 地址,地址为ip:port
-c 集群名称
cleanUnusedTopic 清理Broker上不使用的Topic,从内存中释放Topic的Consume Queue,如果手动删除Topic会产生不使用的Topic -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-b Broker 地址,地址为ip:port
-c 集群名称
sendMsgStatus 向Broker发消息,返回发送状态和RT -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-b BrokerName,注意不同于Broker地址
-s 消息大小,单位B
-c 发送次数

4.消息相关

名称 含义 命令选项 说明
queryMsgById 根据offsetMsgId查询msg,如果使用开源控制台,应使用offsetMsgId,此命令还有其他参数,具体作用请阅读QueryMsgByIdSubCommand。 -i msgId
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
queryMsgByKey 根据消息 Key 查询消息 -k msgKey
-t Topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
queryMsgByOffset 根据 Offset 查询消息 -b Broker 名称,(这里需要注意 填写的是 Broker 的名称,不是 Broker 的地址,Broker 名称可以在 clusterList 查到)
-i query 队列 id
-o offset 值
-t topic 名称
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
queryMsgByUniqueKey 根据msgId查询,msgId不同于offsetMsgId,区别详见常见运维问题。-g,-d配合使用,查到消息后尝试让特定的消费者消费消息并返回消费结果 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-i uniqe msg id
-g consumerGroup
-d clientId
-t topic名称
checkMsgSendRT 检测向topic发消息的RT,功能类似clusterRT -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic名称
-a 探测次数
-s 消息大小
sendMessage 发送一条消息,可以根据配置发往特定Message Queue,或普通发送。 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic名称
-p body,消息体
-k keys
-c tags
-b BrokerName
-i queueId
consumeMessage 消费消息。可以根据offset、开始&结束时间戳、消息队列消费消息,配置不同执行不同消费逻辑,详见ConsumeMessageCommand。 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic名称
-b BrokerName
-o 从offset开始消费
-i queueId
-g 消费者分组
-s 开始时间戳,格式详见-h
-d 结束时间戳
-c 消费多少条消息
printMsg 从Broker消费消息并打印,可选时间段 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic名称
-c 字符集,例如UTF-8
-s subExpress,过滤表达式
-b 开始时间戳,格式参见-h
-e 结束时间戳
-d 是否打印消息体
printMsgByQueue 类似printMsg,但指定Message Queue -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-t topic名称
-i queueId
-a BrokerName
-c 字符集,例如UTF-8
-s subExpress,过滤表达式
-b 开始时间戳,格式参见-h
-e 结束时间戳
-p 是否打印消息
-d 是否打印消息体
-f 是否统计tag数量并打印
resetOffsetByTime 按时间戳重置offset,Broker和consumer都会重置 -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-g 消费者分组
-t topic名称
-s 重置为此时间戳对应的offset
-f 是否强制重置,如果false,只支持回溯offset,如果true,不管时间戳对应offset与consumeOffset关系
-c 是否重置c++客户端offset

5.消费者和消费者组相关

名称 含义 命令选项 说明
consumerProgress 查看订阅组消费状态,可以查看具体的client IP的消息积累量 -g 消费者所属组名
-s 是否打印client IP
-h 打印帮助
-n NameServer 服务地址,格式 ip:port
consumerStatus 查看消费者状态,包括同一个分组中是否都是相同的订阅,分析Process Queue是否堆积,返回消费者jstack结果,内容较多,使用者参见ConsumerStatusSubCommand -h 打印帮助
-n NameServer 服务地址,格式 ip:port
-g consumer group
-i clientId
-s 是否执行jstack
getConsumerStatus 获取 Consumer 消费进度 -g 消费者所属组名
-t 查询主题
-i Consumer 客户端 ip
-n NameServer 服务地址,格式 ip:port
-h 打印帮助
updateSubGroup 更新或创建订阅关系 -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-b Broker地址
-c 集群名称
-g 消费者分组名称
-s 分组是否允许消费
-m 是否从最小offset开始消费
-d 是否是广播模式
-q 重试队列数量
-r 最大重试次数
-i 当slaveReadEnable开启时有效,且还未达到从slave消费时建议从哪个BrokerId消费,可以配置备机id,主动从备机消费
-w 如果Broker建议从slave消费,配置决定从哪个slave消费,配置BrokerId,例如1
-a 当消费者数量变化时是否通知其他消费者负载均衡
deleteSubGroup 从Broker删除订阅关系 -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-b Broker地址
-c 集群名称
-g 消费者分组名称
cloneGroupOffset 在目标群组中使用源群组的offset -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-s 源消费者组
-d 目标消费者组
-t topic名称
-o 暂未使用

6.连接相关

名称 含义 命令选项 说明
consumerConnec tion 查询 Consumer 的网络连接 -g 消费者所属组名
-n NameServer 服务地址,格式 ip:port
-h 打印帮助
producerConnec tion 查询 Producer 的网络连接 -g 生产者所属组名
-t 主题名称
-n NameServer 服务地址,格式 ip:port
-h 打印帮助

7.NameServer相关

名称 含义 命令选项 说明
updateKvConfig 更新NameServer的kv配置,目前还未使用 -s 命名空间
-k key
-v value
-n NameServer 服务地址,格式 ip:port
-h 打印帮助
deleteKvConfig 删除NameServer的kv配置 -s 命名空间
-k key
-n NameServer 服务地址,格式 ip:port
-h 打印帮助
getNamesrvConfig 获取NameServer配置 -n NameServer 服务地址,格式 ip:port
-h 打印帮助
updateNamesrvConfig 修改NameServer配置 -n NameServer 服务地址,格式 ip:port
-h 打印帮助
-k key
-v value

8.其他

名称 含义 命令选项 说明
startMonitoring 开启监控进程,监控消息误删、重试队列消息数等 -n NameServer 服务地址,格式 ip:port
-h 打印帮助

注意:
1、几乎所有指令都需要通过-n参数配置nameServer地址,格式为ip:port
2、几乎所有执行都可以通过-h参数获得帮助
3、当既有Broker地址(-b)又有集群名称clustername(-c)配合项,则优先以Broker地址执行指令。如果不配置Broker地址,则对集群中所有主机执行指令。

命令行快速验证


RocketMQ的安装包中,提供了一个tools.sh工具可以用来在命令行快速验证RocketMQ服务。我们在134上进入RocketMQ的安装目录:

发送消息:默认会发1000条消息

bin/tools.sh org.apache.rocketmq.example.quickstart.Producer

接收消息:

bin/tools.sh  org.apache.rocketmq.example.quickstart.Consumer

注意,这是官方提供的Demo,但是官方的源码中,这两个类都是没有指定nameServer的,所以运行会有点问题。要指定NameServer地址,可以配置一个环境变量NAMESRV_ADDR,这样默认会读取这个NameServer地址。可以配到.bash_profile里或者直接临时指定。

export NAMESRV_ADDR='192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876'

然后就可以正常执行了。

这个NameServer地址的读取方式见源码中org.apache.rocketmq.common.utils.NameServerAddressUtils

public static String getNameServerAddresses() {
        return System.getProperty("rocketmq.namesrv.addr", System.getenv("NAMESRV_ADDR"));
    }

这个方法就是在DefaultMQProducer中默认的设置NameServer地址的方式,这个rokcetmq.namesrv.addr属性可以在java中使用System.setproperties指定,也可以在SpringBoot中配到配置文件里。

这个tools.sh就封装了一个简单的运行RocketMQ的环境,可以运行源码中的其他示例,然后自己的例子也可以放到RocketMQ的lib目录下去执行。

命令行快速验证


RocketMQ源代码中并没有提供控制台,但是有一个Rocket的社区扩展项目中提供了一个控制台,GITHUB地址

下载下来后,进入其中的rocket-console目录,使用maven进行编译

mvn clean package -Dmaven.test.skip=true

编译完成后,获取target下的jar包,就可以直接执行。但是这个时候要注意,在这个项目的application.properties中需要指定nameserver的地址。默认这个属性是空的。

那我们可以在jar包的当前目录下增加一个application.properties文件,覆盖jar包中默认的一个属性:

rocketmq.config.namesrvAddr=192.168.230.133:9876;192.168.230.134:9876;192.168.230.135:9876

然后执行:

java -jar rocketmq-console-ng-1.0.1.jar

启动完成后,可以访问 http://192.168.230.133:8080看到管理页面

在管理页面的右上角可以选择语言。

image20220421205945924.png

Dleger高可用集群搭建

1.Dleger介绍

当brokerServer中,的三个2m-2s-async2m-2s-sync2m-noslave,都不具备真实的高可用,在4.5版本以后引入了dledger,它是一个三方技术,不是rocketMQ自己的,类似kakfa和zk的关系。Dledger技术做的事情:

  1. 接管Broker的CommitLog消息存储
  2. 从集群中选举出master节点
  3. 完成master节点往slave节点的消息同步。

2.Dleger的选举机制

​ 首先:每个节点有三个状态,Leaderfollowercandidate(候选人)。正常运行的情况下,集群中会有一个leader,其他都是followerfollower只响应LeaderCandidate的请求,而客户端的请求全部由Leader处理,即使有客户端请求到了一个follower,也会将请求转发到leader

​ 集群刚启动时,每个节点都是follower状态,之后集群内部会发送一个timeout信号,所有follower就转成candidate去拉取选票,获得大多数选票的节点选为leader,其他候选人转为follower。如果一个timeout信号发出时,没有选出leader,将会重新开始一次新的选举。而Leader节点会往其他节点发送心跳信号,确认他的leader状态。

​ 然后会启动定时器,如果在指定时间内没有收到Leader的心跳,就会转为Candidate状态,然后向其他成员发起投票请求,如果收到半数以上成员的投票,则Candidate会晋升为Leader。然后leader也有可能会退化成follower。

​ 在Raft协议中,会将时间分为一些任意时间长度的时间片段,叫做termterm会使用一个全局唯一,连续递增的编号作为标识,也就是起到了一个逻辑时钟的作用。

image20220424163827606.png

​ 在每一个term时间片里,都会进行新的选举,每一个Candidate都会努力争取成为leader。获得票数最多的节点就会被选举为Leader。被选为Leader的这个节点,在一个term时间片里就会保持leader状态。这样,就会保证在同一时间段内,集群中只会有一个Leader。在某些情况下,选票可能会被各个节点瓜分,形成不了多数派,那这个term可能直到结束都没有leader,直到下一个term再重新发起选举,这也就没有了Zookeeper中的脑裂问题。而在每次重新选举的过程中, leader也有可能会退化成为follower。也就是说,在这个集群中, leader节点是会不断变化的。

然后,每次选举的过程中,每个节点都会存储当前`term编号`,并在节点之间进行交流时,都会带上自己的term编号。如果一个节点发现他的编号比另外一个小,那么他就会将自己的编号更新为较大的那一个。而如果leader或者candidate发现自己的编号不是最新的,他就会自动转成follower。如果接收到的请求term编号小于自己的编号,term将会拒绝执行。

​ 在选举过程中,Raft协议会通过心跳机制发起leader选举。节点都是从follower状态开始的,如果收到了来自leader或者candidate的心跳RPC请求,那他就会保持follower状态,避免争抢成为candidate。而leader会往其他节点发送心跳信号,来确认自己的地位。如果follower一段时间(两个timeout信号)内没有收到Leader的心跳信号,他就会认为leader挂了,发起新一轮选举

选举开始后,每个`follower`会增加自己当前的`term`,并将自己转为`candidate`。然后向其他节点发起投票请求,请求时会带上自己的编号和term,也就是说都会默认投自己一票。之后`candidate`状态可能会发生以下三种变化:
  • 赢得选举,成为leader: 如果它在一个term内收到了大多数的选票,将会在接下的剩余term时间内称为leader,然后就可以通过发送心跳确立自己的地位。(每一个server在一个term内只能投一张选票,并且按照先到先得的原则投出)
  • 其他节点成为leader: 在等待投票时,可能会收到其他server发出心跳信号,说明其他leader已经产生了。这时通过比较自己的term编号和RPC过来的term编号,如果比对方大,说明leader的term过期了,就会拒绝该RPC,并继续保持候选人身份; 如果对方编号不比自己小,则承认对方的地位,转为follower。
  • 选票被瓜分,选举失败: 如果没有candidate获取大多数选票, 则没有leader产生, candidate们等待超时后发起另一轮选举. 为了防止下一次选票还被瓜分,必须采取一些额外的措施, raft采用随机election timeout(随机休眠时间)的机制防止选票被持续瓜分。通过将timeout随机设为一段区间上的某个值, 因此很大概率会有某个candidate率先超时然后赢得大部分选票。

所以以三个节点的集群为例,选举过程会是这样的:

image20220424170339234.png

  1. 集群启动时,三个节点都是follower,然后都变成竞选者Candidate发起投票后,三个节点都会给自己投票。这样一轮投票下来,三个节点的term都是1,是一样的,这样是选举不出Leader的。
  2. 当一轮投票选举不出Leader后,三个节点会进入随机休眠,例如10秒,50秒,100秒。
  3. 一秒后,第一个节点醒来,会把自己的term加一票,投为2。然后2秒时,第二个节点醒来,发现第一个的term已经是2,比自己的1大,就会承认第一个是Leader,把自己的term也更新为2。实际上这个时候,第一个已经获得了集群中的多数票,2票,第一个就会被选举成Leader。这样,一般经过很短的几轮选举,就会选举出一个Leader来。
  4. 到100秒时,最后一个节点会醒来,他也同样会承认第一个的term最大,他是Leader,自己的term也会更新为2。这样集群中的所有Candidate就都确定成了leader和follower.
  5. 然后在一个任期内,第一个会不断发心跳给另外两个节点。当leader挂了后,follow没有收到leader的心跳,就会都转化成Candidate状态,重新发起选举。

Dledger还会采用Raft协议进行多副本的消息同步:

简单来说,数据同步会通过两个阶段,一个是uncommitted阶段,一个是commited阶段。
Leader Broker上的Dledger收到一条数据后,会标记为uncommitted状态,然后他通过自己的DledgerServer组件把这个uncommitted数据发给Follower Broker的DledgerServer组件。
接着Follower Broker的DledgerServer收到uncommitted消息之后,必须返回一个ack给Leader Broker的Dledger。然后如果Leader Broker收到超过半数的Follower Broker返回的ack之后,就会把消息标记为committed状态。
再接下来, Leader Broker上的DledgerServer就会发送committed消息给Follower Broker上的DledgerServer,让他们把消息也标记为committed状态。这样,就基于Raft协议完成了两阶段的数据同步。

3.Dleger的配置

要搭建高可用的Broker集群,我们只需要配置conf/dleger下的配置文件就行。

这种模式是基于Raft协议的,是一个类似于Zookeeper的paxos协议的选举协议,也是会在集群中随机选举出一个leader,其他的就是follower。只是他选举的过程跟paxos有点不同。Raft协议基于随机休眠机制的,选举过程会比paxos相对慢一点。

首先:我们同样是需要修改runserver.sh和runbroker.sh,对JVM内存进行定制。 然后:我们需要修改conf/dleger下的配置文件。 跟dleger相关的几个配置项如下:

name 含义 举例
enableDLegerCommitLog 是否启动 DLedger true
dLegerGroup DLedger Raft Group的名字,建议和 brokerName 保持一致 RaftNode00
dLegerPeers DLedger Group 内各节点的端口信息,同一个 Group 内的各个节点配置必须要保证一致 n0-127.0.0.1:40911;n1-127.0.0.1:40912;n2-127.0.0.1:40913
dLegerSelfId 节点 id, 必须属于 dLegerPeers 中的一个;同 Group 内各个节点要唯一 n0
sendMessageThreadPoolNums 发送线程个数,建议配置成 Cpu 核数 16

配置完后,同样是使用 nohup bin/mqbroker -c $conf_name & 的方式指定实例文件。

在bin/dleger下有个fast-try.sh,这个脚本是在本地启动三个RocketMQ实例,搭建一个高可用的集群,读取的就是conf/dleger下的broker-no.conf,broker-n1.conf和broker-n2.conf。使用这个脚本同样要注意定制下JVM内存,他给每个实例默认定制的是1G内存,虚拟机肯定是不够的。
这种单机三实例的集群搭建完成后,可以使用 bin/mqadmin clusterList -n worker1.conf的方式查看集群状态。
单机状态下一般一次主从切换需要大概10S的时间。

调整系统参数

到这里,我们的整个RocketMQ的服务就搭建完成了。但是在实际使用时,我们说RocketMQ的吞吐量、性能都很高,那要发挥RocketMQ的高性能,还需要对RocketMQ以及服务器的性能进行定制

1、配置RocketMQ的JVM内存大小

之前提到过,在runserver.sh中需要定制nameserver的内存大小,在runbroker.sh中需要定制broker的内存大小。这些默认的配置可以认为都是经过检验的最优化配置,但是在实际情况中都还需要根据服务器的实际情况进行调整。这里以runbroker.sh中对G1GC的配置举例,在runbroker.sh中的关键配置:

JAVA_OPT="${JAVA_OPT} -XX:+UseG1GC -XX:G1HeapRegionSize=16m -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -XX:SoftRefLRUPolicyMSPerMB=0"
JAVA_OPT="${JAVA_OPT} -verbose:gc -Xloggc:${GC_LOG_DIR}/rmq_broker_gc_%p_%t.log -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintAdaptiveSizePolicy"
JAVA_OPT="${JAVA_OPT} -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=30m"

-XX:+UseG1GC: 使用G1垃圾回收器, -XX:G1HeapRegionSize=16m 将G1的region块大小设为16M,

-XX:G1ReservePercent:在G1的老年代中预留25%空闲内存,这个默认值是10%,RocketMQ把这个参数调大了。

-XX:InitiatingHeapOccupancyPercent=30:当堆内存的使用率达到30%之后就会启动G1垃圾回收器尝试回收垃圾,默认值是45%,RocketMQ把这个参数调小了,也就是提高了GC的频率,但是避免了垃圾对象过多,一次垃圾回收时间太长的问题。

然后,后面定制了GC的日志文件,确定GC日志文件的地址、打印的内容以及控制每个日志文件的大小为30M并且只保留5个文件。这些在进行性能检验时,是相当重要的参考内容。

2、RocketMQ的其他一些核心参数

例如在conf/dleger/broker-n0.conf中有一个参数:sendMessageThreadPoolNums=16。这一个参数是表明RocketMQ内部用来发送消息的线程池的线程数量是16个,其实这个参数可以根据机器的CPU核心数进行适当调整,例如如果你的机器核心数超过16个,就可以把这个参数适当调大。

3、Linux内核参数定制

我们在部署RocketMQ的时候,还需要对Linux内核参数进行一定的定制。例如

  • ulimit,需要进行大量的网络通信和磁盘IO。
  • vm.extra_free_kbytes,告诉VM在后台回收(kswapd)启动的阈值与直接回收(通过分配进程)的阈值之间保留额外的可用内存。RocketMQ使用此参数来避免内存分配中的长延迟。(与具体内核版本相关)
  • vm.min_free_kbytes,如果将其设置为低于1024KB,将会巧妙的将系统破坏,并且系统在高负载下容易出现死锁。
  • vm.max_map_count,限制一个进程可能具有的最大内存映射区域数。RocketMQ将使用mmap加载CommitLog和ConsumeQueue,因此建议将为此参数设置较大的值。
  • vm.swappiness,定义内核交换内存页面的积极程度。较高的值会增加攻击性,较低的值会减少交换量。建议将值设置为10来避免交换延迟。
  • File descriptor limits,RocketMQ需要为文件(CommitLog和ConsumeQueue)和网络连接打开文件描述符。我们建议设置文件描述符的值为655350。

这些参数在CentOS7中的配置文件都在 /proc/sys/vm目录下。
另外,RocketMQ的bin目录下有个os.sh里面设置了RocketMQ建议的系统内核参数,可以根据情况进行调整。